The evolution of microstructure and microhardness of Sn-Ag and Sn-Cu solders during high temperature aging
نویسندگان
چکیده
The changes in microstructure and microhardness of Sn-0.5%Ag, Sn-1.0%Ag, and Sn-0.7%Cu Pb-free solders were investigated during high temperature aging at 200°C for 2 h. As-solidified microstructures, revealed by cross-polarized light microscopy, consist of relatively large grains of β-Sn phase with twinned microstructure in both Sn-Ag and Sn-Cu solders. The bright-field light microscopy displays Sn-dendrite cellular structure in Sn-Ag, and a mixture of Sn-dendrite cells and the eutectic microstructure in Sn-Cu. Upon aging at 200°C, 2 h, Sn grains become smaller compared to the as-solidified ones. In addition, the microhardness of Sn-Ag solders surprisingly increases after the aging, while that of Sn-Cu solder decreases. Detailed inspection of the redistribution and coarsening of intermetallic particles in each system further explains this unusual response of mechanical properties during high temperature aging. In this study, it is demonstrated that the microhardness of Sn-Ag and Sn-Cu solders is better correlated with the characteristics of their intermetallics, such as particle size, density and distribution, rather than Sn grain size.
منابع مشابه
Effect of Ni or Co Addition to Sn-Ag Solder on Microstructure and Joint Strength at Interface
Among various lead-free alloys, Sn-Ag(-Cu) system solders are considered the most promising lead-free solders for both wave and reflow soldering technology. Moreover, to improve the characteristics of lead-free solders, the effect of the addition of minor elements to lead-free solders on the properties of solder and interfacial reactions have been studied. The purpose of this research was to in...
متن کاملInvestigation of microstructure and physical properties in nanocomposite solder reinforced with various percent of graphene nanosheets (SAC0307+GNSs)
Development of electronic industries, compression of electronic equipment, and removing lead from electronic circuits for environmental issues, resulted in a significant challenge in design and development of tin-based lead-free solders with physical and mechanical properties similar to old tin-lead alloys. In this regard, the set of Sn-Ag-Cu alloys with eutectic and near eutectic compositions ...
متن کاملInvestigation of microstructure and physical properties in nanocomposite solder reinforced with various percent of graphene nanosheets (SAC0307+GNSs)
Development of electronic industries, compression of electronic equipment, and removing lead from electronic circuits for environmental issues, resulted in a significant challenge in design and development of tin-based lead-free solders with physical and mechanical properties similar to old tin-lead alloys. In this regard, the set of Sn-Ag-Cu alloys with eutectic and near eutectic compositions ...
متن کاملThe Microstructure and Crystal Orientation of Sn-Ag and Sn-Cu Solders Affected by their Interfacial Reactions with Cu and Ni(P)
Recently, it has been reported that the crystal orientation and grain size of the β-Sn phase in Sn-rich solders have profound effects on the reliabilities of Pb-free solder joints, such as thermo-mechanical fatigue, electromigration, and among others. Additionally, it is also known that the microstructure of Sn-rich solders is strongly affected by their alloy composition. In this study, the gra...
متن کاملThermal Cycling Reliability of Alternative Low-Silver Tin-based Solders
Sn-3.0Ag-0.5Cu (SAC305) alloy is the most widely used solder in electronic assemblies. However, issues associated with cost and drop/shock durability have resulted in a continued search for alternative solder alloys. One approach to improve the drop/shock reliability has been to reduce the silver content in Sn-AgCu alloys. Another approach is doping Sn-Ag-Cu solder with additional elements. Mor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microelectronics Reliability
دوره 49 شماره
صفحات -
تاریخ انتشار 2009